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The next-generation ground-based gamma-ray Cherenkov Telescope Array Observatory (CTAO)
will consist of imaging atmospheric Cherenkov telescopes (IACTs) of three different sizes dis-
tributed in two sites. The Large-Sized Telescopes will cover the low-energy end of the CTA energy
range, starting at about 20 GeV. After its first years of operation at the CTA northern site, the
Large-Sized Telescope prototype (LST-1) is in the final stage of its commissioning phase, having
collected a significant amount of scientific data to date.
In this contribution, we present the physics performance of the telescope using low-zenith Crab
Nebula observations and Monte Carlo simulations fine-tuned accordingly. We show performance
figures of merit such as the energy threshold, effective area, energy and angular resolution, and
sensitivity based on the standard Hillas-parameters approach and following the source-independent
and dependent analysis methods. The analysis threshold is estimated at 30 GeV. The energy
resolution is around 30%, and the angular resolution is 0.3 degrees at 100 GeV. The best integral
sensitivity of LST-1 is about 1.1% of the Crab Nebula flux above 250 GeV for 50 hours of
observations. We also show the spectral energy distribution and light curve from Crab Nebula
observations, which agree with results from other IACTs and link smoothly with Fermi-LAT when
considering statistical and systematic uncertainties near the energy threshold.
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1. Introduction

The Large-Sized Telescopes (LSTs) are the largest among the imaging air Cherenkov telescopes
(IACTs) that will comprise the Cherenkov Telescope Array Observatory (CTAO), a next-generation
ground-based facility for VHE gamma-ray astronomy. LSTs are designed to cover the lower end
of the energy range targeted by CTA, down to energies of about 20 GeV. The LST prototype,
named LST-1, has been operational at the North site of CTAO, at the Observatorio Roque de Los
Muchachos (La Palma, Spain), since November 2019, and has been frequently observing the Crab
Nebula during its commissioning phase, among other astrophysical sources. VHE gamma-ray
emission from the Crab Nebula has been thoroughly characterized over the past decades and found
to be stable within the systematic uncertainties of the VHE instruments, hence it is considered a
calibration source.

In this contribution, we characterize the LST-1 performance based on Crab Nebula observations
and validate the Monte Carlo (MC) simulations used for the LST-1 data analysis. We compare the
results obtained on the Crab Nebula spectrum and light curve with those reported previously by
other instruments. Furthermore, we calculate the differential sensitivity of the LST-1 operating as
a single telescope. For a more detailed description of this work, see [1].

2. Monte Carlo simulations

Detailed MC simulations are key in the reconstruction of the air shower properties (type of
particle, energy and direction) and to produce the instrument response functions (IRFs) for high-
level analysis. We used CORSIKA v7.7100 [2] to simulate shower development and Cherenkov
light emission, and sim_telarray v2020-06-28 [3] for telescope simulation, which includes the
reflection of Cherenkov light on the mirror dish, its passage through the camera entrance window,
and its recording by the camera. These simulations are analyzed using the same pipeline as the
observed data.

A first set of simulations consisting of gamma rays and protons is used to train random forest
(RF) models [4] for the reconstruction of the physics properties of the observed gamma rays. These
models are also applied to another MC sample of gamma rays (so-called test sample) to calculate
the IRFs to be used in the high-level analysis of the selected gamma-ray events. Both MC training
and test samples were produced in a grid of different telescope-pointing directions following the
path of the Crab Nebula as observed by LST-1. Subsequently, we added the pointing information
to the set of training parameters of the RF models so that it was considered in the reconstruction.
Furthermore, the IRFs used for the analysis of each data run correspond to its nearest pointing node
in the MC grid.

We adjusted the MC simulation to match the real optical efficiency (which shows a ±5%
variation in the time interval of the observations), monitored using muon ring images, and the
optical point spread function of the telescope. The analysis presented here does not use a run-wise
tuning, but MC tuned to the average observational conditions of the data set. Also, we adjusted the
night sky background level in the MC simulation to the one found in the Crab Nebula field of view
(FoV). The comparison of the distributions of the image parameters for both MC simulations and
observed gamma-ray excess from the Crab Nebula yields an excellent agreement.
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Figure 1: IRFs as a function of the true energy for source-independent analysis. Left panels: fixed zenith
angle at 10° and several gamma-ray selection efficiencies. Right panels: fixed gamma-ray selection efficiency
to 70% for several zenith angles. Top panels: the angular resolution, mid panels: the effective area, and
bottom panels: the energy resolution and bias. The angular cut for the calculation of the effective area and
energy resolution has an efficiency of 70%. Figure from [1].

2.1 Instrument response functions

IRFs (effective collection area, angular and energy resolution) are essential figures of merit
in the telescope’s performance. We calculated these quantities based on the test MC sample as a
function of the true energy. Figure 1 shows the dependence for a fixed zenith angle of 10° and
varying efficiencies of gamma-ray selection cuts, and vice versa for a fixed efficiency of 70% and
varying zenith angles.

3. Crab data sample and analysis pipeline

We used 34.2 hours of effective observation time of good-quality Crab Nebula data, consisting
of observations carried out at low zenith angles (below 35°), in dark night conditions, and in good
weather, in order to achieve the lowest energy threshold possible. The data were recorded between
November 2020 and March 2022, spanning ≃ 1.5 years. The observations were performed in
wobble mode [5], pointing in two mirrored directions 0.4° away from the location of the Crab
Nebula.
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The low-level processing of the LST-1 data from raw uncalibrated waveforms up to lists of
gamma-ray-like events (DL3) was done with the analysis library cta-lstchain v0.9 [6], built
based on ctapipe [7]. We calculated the IRFs using pyirf [8]. The handling of the reduction of
the observed data was performed using lstosa [9], while the training of models and production
of the IRFs was managed through lstMCpipe [10]. We followed the classic source-independent
Hillas-based analysis and RF event-reconstruction techniques. The monoscopic analysis is usually
limited by the background rejection, especially near the energy threshold. To enhance the signal
reconstruction, at these energies, besides the standard source-independent analysis, we also use the
source-dependent approach, which takes advantage of the a priori knowledge of the source location.

4. Results

In this section, we present the spectral energy distribution (SED) and light curve of the Crab
Nebula, comparing them with measurements by other instruments as an alternative way to evaluate
the performance of the telescope. Finally, we show the differential flux sensitivity of LST-1 for
point-like source observations also using the Crab Nebula observations.

4.1 Crab Nebula spectrum and light curve

We used Gammapy v0.20 [11] to compute the SED and light curve. We first select events with
image intensity greater than 80 photoelectrons, a cut that ensures a good agreement between real
data and simulations by removing events too close to the trigger threshold, which was not completely
stable during the commissioning phase. Then, we select gamma rays by applying energy-dependent
gammaness and directional cuts (on the so-called \ and 𝛼 parameters for the source-independent and
source-dependent analyses, respectively) with a given efficiency, which leaves a certain percentage
of gamma-ray MC events in each bin. We use 70% efficiency in both gammaness and angular cuts
for the baseline analysis.

To extract the gamma-ray signal and estimate the residual background, we use aperture photom-
etry with a single control off-source sky region within the same FoV as the on-source region from
which the signal is extracted. We calculate the spectrum through a forward-folding likelihood fit
from 50 GeV to 30 TeV assuming a log-parabolic model: d𝜙/d𝐸 = 𝑓0 · (𝐸/𝐸0)−𝛼−𝛽 ·ln(𝐸/𝐸0 ) [cm−2

s−1 TeV−1], with 𝐸0 = 400 GeV, close to the decorrelation energy. The resulting best-fit model
for the source-independent and source-dependent analyses is shown in Fig. 2 and the determined
spectral parameters are listed in Table 1. Based on these spectral models, flux points are computed
by fitting only the normalization in each energy bin. To test the consistency of the obtained Crab
Nebula SED near the LST-1 threshold with that from Fermi-LAT, we performed a joint fit from
2 GeV to 2 TeV, using LST-1 data and Fermi-LAT spectral points [12]. LST-1 spectral points below
50 GeV are computed based on this joint-model fit.

We tested the stability of the resulting SED against the choice of the cut values by assuming
a grid of gamma-ray selection cut efficiencies of 40%-90% for gammaness and 70%-90% for \/𝛼
cuts. We illustrate the band containing all the resulting SEDs fits assuming different combinations
of the efficiencies in Fig. 2. Additionally, given the apparent discrepancy of the first spectral points
of the LST-1 from the best-fit model, assuming only statistical uncertainties, we checked the effect
of a possible systematic uncertainty in the estimation of the background. We tested the effect of a
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Figure 2: SED of the Crab Nebula obtained using the source-independent (left) and source-dependent (right)
analysis. Flux points (black circles) and best-fit model (solid line) correspond to the dataset with a cut in
image intensity > 80 p.e., and energy-dependent gammaness and 𝛼/\ selection cuts with 70% gamma-ray
efficiency. Figure from [1].

Analysis type 𝑓0 [TeV−1cm−2 s−1] 𝛼 𝛽 𝜒2/𝑁dof

Source-independent (3.05 ± 0.02) × 10−10 2.25 ± 0.01 0.114 ± 0.006 48.5 / 18
Source-dependent (2.87 ± 0.02) × 10−10 2.26 ± 0.01 0.115 ± 0.006 32.9 / 18

Table 1: Spectral parameters of the LST-1 Crab Nebula best-fit model in the energy range 50 GeV - 30 TeV
assuming a log-parabolic model. In both cases 𝐸0 = 400 GeV and quoted uncertainties are only statistical.

+1% change in the background normalization. This slight modification has a great impact on the
low-energy spectral points, as shown by the open markers in Fig. 2. Actually, a change of +0.5%
in the background normalization is sufficient to make the first LST-1 points compatible with the
joint Fermi-LAT+LST-1 SED in the case of the Crab Nebula. This agrees with the fact that we see
differences of ≈ 0.5% in the background rate between different equidistant off-source positions.

Considering these uncertainties, the LST-1 spectrum agrees with that reported by MAGIC in
the same energy range [13] within 10% in flux, which is typically the level of systematic uncertainty
of IACTs. Moreover, the LST-1 spectrum at low energies agrees with that reported by Fermi-LAT.

To check that the VHE gamma-ray flux from the Crab Nebula remained stable across the time
span of observations used in this work, we computed the daily light curve above 100 GeV (Fig. 3).
We assume a log-parabola spectral model with the best-fit spectral parameters reported in Table 1.
We test the steady flux hypothesis by fitting the light curve to a constant value of 𝐹>100 GeV =

(4.95 ± 0.03) × 10−10 cm−2 s−1, with 𝜒2/𝑁𝑑𝑜 𝑓 = 119.2/33 (P-value=1 × 10−11) for the source-
independent analysis, and 𝐹>100 GeV = (4.65 ± 0.03) × 10−10 cm−2 s−1, with 𝜒2/𝑁𝑑𝑜 𝑓 = 147.6/33
(P-value=2 × 10−16) for the source-dependent analysis. Only assuming statistical uncertainties, the
results are clearly inconsistent with constant flux. Nonetheless, the tests conducted on the SED reveal
that the total uncertainty must be significantly higher. We calculated that the additional uncertainty
(added in quadrature to the statistical uncertainty) to make the light curves compatible with a stable
flux is 6% and 7% on the night-wise flux values, respectively, for the source-independent and source-
dependent analyses. This level of night-to-night systematics is not surprising, as we did not account
for possible variable observing conditions in this work by using run-wise or night-wise IRFs.
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Figure 3: Light curve (>100 GeV) of the Crab Nebula using 1-day bins for source-independent (left) and
source-dependent analyses (right). The best fit to a constant flux is plotted as a dash-dotted line. For
reference, we also depict the integral flux in the same energy range calculated from [13]. The black error
bars correspond to the statistical errors, while the gray ones include the systematic uncertainties summed
quadratically (see main text). Figure taken from [1].

4.2 Flux sensitivity

Flux sensitivity is the minimum flux from a point-like source that an IACT can detect with
a statistical significance of 5𝜎 assuming 50-hour observation time, and using 5 OFF regions for
the background estimation. Moreover, we impose a minimum of 10 gamma rays detected in each
energy bin (we use 5 logarithmic bins per decade) and a signal-to-background ratio (𝑆/𝐵) larger
than 5%. The sensitivity calculation is based on the low-zenith Crab Nebula data, and follows the
source-independent and source-dependent methods. Angular and gammaness selection cuts were
optimized on a subset of the Crab Nebula data to achieve the best sensitivity in each bin of energy.

Figure 4 depicts the resulting sensitivity, with bands indicating the total uncertainty, assuming
a 1% systematic uncertainty in background normalization. We additionally show the sensitivity in
flux without considering the requirement to have a 𝑆/𝐵 > 5%. This indicates that the sensitivity
near the threshold is limited by the systematic uncertainty of the background normalization. The two
analysis methods considered in this work result in similar flux sensitivity, with the source-dependent
approach providing marginally better results above 1 TeV.

The optimal integrated sensitivity in 50 hours of observation is achieved for energies greater
than 250 GeV, yielding 1.1% Crab units. Also, since one of the main objectives of the LST-1 is
detecting transients in short observing times, we estimate the integrated sensitivity for an exposure
of 0.5 hours above 250 GeV, which is 12.4% Crab units. In comparison, we show the sensitivity
curve of MAGIC, which on average is a factor of 1.5 better above 100 GeV. This difference is
due to the benefit of the stereo reconstruction and distant muon rejection despite the lower energy
threshold of LST-1.
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Figure 4: Differential sensitivity for source dependent and source independent analyses, as a function of
reconstructed energy, with and without including the condition that the signal-to-noise ratio has to be at least
5%. The MAGIC reference is taken from [14]. Figure from [1].

5. Conclusions

We report the performance of the LST-1 estimated based on Crab Nebula observations during
its commissioning and the MC simulations used for the analysis. The detailed description of the
study can be found in [1]. While we are able to properly reproduce the Crab Nebula spectrum
and light curve, we remark the importance of understanding the systematic uncertainties near the
threshold. A separate contribution focuses on the Crab pulsar analysis [15], emphasizing the
exceptional capabilities of LST-1 near its energy threshold at a few tens of GeV.

Until the upcoming CTAO-North comes into play in the next couple of years, LST-1 is already
a competitive instrument able to produce scientific results (see, e.g., [16]). LST-1 is also exploiting
the possibility of jointly observing with the MAGIC telescopes located nearby. Simultaneous
observations allow for a stereoscopic system of three telescopes with higher sensitivity than MAGIC
and LST-1 alone [17].
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